
ECE276 Reinforcement Learning Final Project
Advantage Actor Critic(A2C) with Experience Replay
Chun Hu† Po-Jung Lai† Chih-Hui Ho*

Department of Electrical Engineering † Department of Computer Science *

University of California San Diego

Contact Information:
Email: chh281@eng.ucsd.edu

polai@eng.ucsd.edu
chh279@eng.ucsd.edu

Abstract
We propose a simple and lightweight framework for deep reinforcement learning that uses syn-

chronous gradient descent for optimization of deep neural network controllers with experience re-
play. We incorporate synchronous, deterministic variant of reinforcement learning algorithms, named
A2C, with experience replay and show that parallel actor-learners have a stabilizing effect on training
allowing the algorithm to successfully solve games in OpenAI gym. Moreover, different experience
replay buffer size and sampling techniques are compared. Our result outperforms the baseline A2C
without experience replay.

1 Introduction
In the literature of reinforcement learning, several methods are proposed to improve the policy and
those methods can be coarsely categorized into 2 categories. The first category finds the optimal
policy indirectly through the surrogate optimal value function, while the other methods, or policy it-
eration, optimize the policy directly. Actor-critic [1] method is a well-known method that generalizes
policy iteration. It iterates between the policy evaluation process and the policy improvement process.
2 modules, an actor module and a critic module, are interacting with each other. The actor module
aims at improving the current policy, while the critic module evaluates the current policy.

A recent paper advantage actor-critic method [2] discussed an alternative way to train the system
by using synchronous gradient descent for optimization of deep neural network controllers and show
that the stability of the network is improved. In this final project, the advantage actor-critic(A2C)
method is implemented. Several Atari games and traditional control problems were experimented
using the algorithm. In addition, experience replay technique is utilized to boost the performance of
the network.

2 Related work
Advantage actor-critic (A2C) method [2] proposed to train the network in synchronous way and apply
to different RL learning algorithms, including SARSA, Q-learning and actor critic. The motivation
of proposed method is to solve the instability when training the network in the same thread, due to
the high correlation between the training data. Although adding experience replay techniques can
alleviate the problem, it constraints the training procedure to be off-policy and the replay buffer will
increase significantly as more experience is needed, which results in high memory usage.

3 Project Idea
The baseline implementation is to replicate the A2C algorithm. Since the A2C only depends on the
on-policy update, the algorithm discard all the trajectories after updating. To further extend the sta-
bility and capability of the network, we implement the algorithm Sample Efficient Actor-Critic with
Experience Replay[3] by adding the experience replay to the original A2C algorithm. We wonder
that the old trajectories may be still useful as for updating the networks. Hopefully, We will show that
utilizing the appropriate size of experience replay buffer will stabilize and boost the performance of
the network.

4 Evaluation Metric
Assume the network is trained with T threads. All the returns for each thread are recorded during
the training procedure. When the training is done, the returns of each trajectory for each thread is
sorted according to the time it is generated. The typical running average methods is applied on the
sorted reward. The results are shown in Figure 1. The performance of our result is comparable to the
state-of-the-art result

5 Algorithm

Algorithm 1 Advantage actor-critic with experience replay
//Assume global shared parameter vectors θ and θv and global shared counter T = 0
// Assume thread-specific parameter vectors θ′ and θv

Initialize thread step counter t← 1
for T < Tmax do

Reset gradient: dθ ← 0 and dθv ← 0
Synchronize thread specific parameters θ′ = θ and θ′v = θv
tstart = t
Get state st
while not terminate or t− tstart < tmax do

Perform at according to policy π(at|st; θ′)
Receive reward rt and new state st+1

t← t + 1,
T ← T + 1

end while
Add the trajectory into replay buffer

X =

{
0, for terminalst
V (st, θ

′
v), for non-terminalst

for i ∈ t− 1, . . . , tstart do
R← ri + γR
Accumulate gradients wrt θ′ : dθ ← dθ + ∆θ′logπ(ai|si; θ′)(R− V (si; θ

′
v))

Accumulate gradients wrt θ′v : dθv ← dθv + ∂(R− V (si; θ
′
v))

2/∂θ′v
end for
Replay the mini-batch and update the network

end for

6 Results

6.1 Experience Replay Buffer Size comparison

Different replay buffer sizes are experimented in this experiment, as illustrated in the first column of
Figure 1. With appropriate replay buffer size (around five to twenty), the performance with replay
buffer outperforms the baseline network. It is observed that the received reward is sensitive to the re-
play buffer size. The result shows that large(> 50) buffer size will harm the performance significantly,
because more unrelated past experiences are likely to be sampled.

6.2 Experience Replay Sample Size comparison

This experiment shows the relationship between reward and sample size under fixed buffer size, as
shown in the second column of Figure 1. As the sample size increases, more past experience are
sampled. Since some of the old trajectories deviate too far from the trajectory generated from current
policy, sampling too many past experience will degrade the performance of the network.

6.3 Prioritized vs Non-prioritized Experience Replay

This experiment investigates the effect of prioritizing the importance of different trajectories. As
demonstrated in the third column of Figure 1, sampling the trajectory with higher reward tends to
boost the performance of the network. In addition, prioritizing the trajectories in replay buffer speeds
up the convergence of the network.

Figure 1: Reward plots for different environments under different experience replay settings
Game Sample Image Buffer size comparison Sample size comparison Prioritized comparison

MountainCar 0 1 2 3 4 5 6
Steps 1e8

−200

−180

−160

−140

−120

R
e
w
a
rd

Baseline
Buffer size 5
Buffer size 20
Buffer size 50

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0
Steps 1e8

−200

−180

−160

−140

−120

R
e
w
a
rd

Baseline
Sample size 5
Sample size 10
Sample size 20

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75
Steps 1e8

−200

−180

−160

−140

−120

R
e
w
a
rd

Prioritized
None-prioritized

CartPole 0.0 0.2 0.4 0.6 0.8
Steps 1e8

60

80

100

120

140

160

180

200

R
e
w
a
rd

Baseline
Buffer Size 5
Buffer Size 10
Buffer Size 20
Buffer Size 50
Buffer Size 100

0 1 2 3 4 5 6
Steps 1e7

60

80

100

120

140

160

180

200

R
e
w
a
rd

Baseline
Sample size 5
Sample size 10
Sample size 20

0.0 0.5 1.0 1.5 2.0 2.5
Steps 1e7

60

80

100

120

140

160

180

200

R
e
w
a
rd

Prioritized
Non-prioritized

Inv. Pendulum 0 1 2 3 4 5 6 7 8
Steps 1e7

0

200

400

600

800

1000

R
e
w
a
rd

Baseline
Buffer size 5
Buffer size 10
Buffer size 20
Buffer size 50
Buffer size 100

0 1 2 3 4 5 6
Steps 1e7

0

200

400

600

800

1000

R
e
w
a
rd

Baseline
Sample 5
Sample 10

0 1 2 3 4 5 6
Steps 1e7

0

200

400

600

800

1000

R
e
w
a
rd

Prioritized
None-prioritized

7 Conclusions

In this project, we demonstrate that the algorithm, A2C with experience replay, can make the conver-
gence speed much faster than the baseline model (A2C). The conducted experiment shows the effect
of different buffer size and sample size settings. With adequate experience replay, our algorithm can
surpass the performance from the baseline.

References

[1] V. R. Konda and J. N. Tsitsiklis, “Actor-critic algorithms,” in Advances in Neural Information
Processing Systems 12, S. A. Solla, T. K. Leen, and K. Müller, Eds. MIT Press, 2000, pp.
1008–1014. [Online]. Available: http://papers.nips.cc/paper/1786-actor-critic-algorithms.pdf

[2] V. Mnih, A. P. Badia, M. Mirza, A. Graves, T. P. Lillicrap, T. Harley, D. Silver, and
K. Kavukcuoglu, “Asynchronous methods for deep reinforcement learning,” CoRR, vol.
abs/1602.01783, 2016. [Online]. Available: http://arxiv.org/abs/1602.01783

[3] Z. Wang, V. Bapst, N. Heess, V. Mnih, R. Munos, K. Kavukcuoglu, and N. de Freitas, “Sample
efficient actor-critic with experience replay,” CoRR, vol. abs/1611.01224, 2016. [Online].
Available: http://arxiv.org/abs/1611.01224

[4] T. Haarnoja, A. Zhou, P. Abbeel, and S. Levine, “Soft actor-critic: Off-policy maximum entropy
deep reinforcement learning with a stochastic actor,” CoRR, vol. abs/1801.01290, 2018. [Online].
Available: http://arxiv.org/abs/1801.01290

Acknowledgements

We thank the assist from the instructors in ECE 276C for setting up the GPU cluster and providing
the suggestion for the final project.


